
CS 360 with Mohammad Hajiabadi

Eason Li

2025 F

1

Contents

1 Finite State (Memory) Automata (Machines) 4
1.1 What languages can or cannot be accepted by DFAs? Or what is the power of DFAs? 5
1.2 The class of regular languages is closed under the union, concatenation, and star operation. . 6

1.2.1 Pumping Lemma . 7
1.3 Regular Expression . 8

1.3.1 Some Examples and Practices . 8

2 Context Free Grammars and Languages 10
2.1 Example CFGs . 10

2.1.1 CFG for A = {x : x has same number of of 0s and 1s} 10
2.1.2 CFG for Palindromes: A = {w ∈ {a, b}∗ : wR = w} . 11
2.1.3 CFGs for A = {w ∈ {(,)}∗ : w is balanced} . 11

2.2 Parse Tree . 12
2.2.1 Yield of a Parse Tree . 12

2.3 Ambiguous vs Non-Ambiguous Grammar . 12
2.4 Power and Limitations of CFGs . 13

2.4.1 Pumping Lemma (for CFL) . 13
2.4.2 A = {0i1i2i : i ≥ 0} is not a CFL . 14
2.4.3 A = {ww : w ∈ {0, 1}∗} is not a CFL . 14

2.5 Closure Properties of CFLs . 15
2.5.1 CFLs are closed under Union, Concatenation, and Star 15
2.5.2 CFLs are NOT closed under Intersection . 15
2.5.3 CFLs are NOT closed under Complementation . 15

2.6 CFLs are more powerful than regular languages . 15
2.6.1 Regular Expressions to CFGs . 15
2.6.2 DFAs to CFGs . 15
2.6.3 Algorithmic Aspects of DFAs/CFLs . 16
2.6.4 Intersection of Regular Languages and CLFs . 16

3 Push Down Automata 17
3.1 PDA Definition . 17

3.1.1 Example PDAs . 17
3.2 PDAs are Non-Deterministic . 18

3.2.1 Example PDAs . 18
3.3 PDAs and CFGs have the same power . 19

4 First Midterm Practices 22

5 Turing Machines: Computing with Unlimited Memory 24
5.1 TMs vs PDAs/ DFAs . 25

5.1.1 Designing Turing Machine for Languages, Examples 25
5.1.2 A = {aibi : i ≥ 1} and its Turing Machine . 26
5.1.3 A = {aibici : i ≥ 1} and its Turing Machine . 26

2

5.1.4 L = {ww : w ∈ {0, 1}∗} and its Turing Machine . 26
5.1.5 Church Turing Thesis . 27
5.1.6 Variants of Turing Machines . 27

5.2 Non-Deterministic TMs (NTMs) . 27
5.2.1 Example A = {Composite numbers} . 28

5.3 Is every language recognizable? . 28
5.3.1 First undecidable problem . 28
5.3.2 Acceptance problem is undecidable . 28
5.3.3 An Unrecognizable Language . 29

5.4 Relation between recognizing and deciding . 29
5.4.1 Halting problem is not decidable . 30
5.4.2 An undecidable language not involving TMs . 30
5.4.3 More Undecidable Problems . 32

5.5 Doubly Unrecognizable Problem . 32

6 Computation Complexity 34
6.1 What is potytime and what can be solved in polytime? . 35

6.1.1 Examples of Languages in P . 35
6.1.2 Time Hierarchy Theorem . 35

6.2 Is it easier to verify a solution than to find it? . 36
6.2.1 Class NP (Non-Deterministic Polynomial Time) . 36
6.2.2 P = NP? . 37

6.3 Reductions: Comparing Relative Hardness . 37
6.3.1 NP hardness and NP completeness . 37
6.3.2 Proving NP-completeness . 38
6.3.3 Cook-Levin Theorem . 40
6.3.4 Alternative definition of NP and Non-deterministic Turing Machines 42
6.3.5 Class coNP . 43
6.3.6 Search vs. Decision for SAT . 45

6.4 Can Randomization Help Computation? . 47
6.4.1 Probabilistic Turing Machine (PTM) . 48
6.4.2 Class BPP (Bounded Probabilistic Poly Time) . 48
6.4.3 Class RP and coRP . 49
6.4.4 RP Error Reduction . 49
6.4.5 BPP Error Reduction . 50
6.4.6 BPP is a subset of “non-constructive P” . 52

6.5 Complexity Class ZPP . 53
6.6 Interractive Proof IP . 53

7 Second Midterm Practices 55
7.1 NP-Complete . 55
7.2 True or False . 56
7.3 Prove B is undecidable assuming A is . 57
7.4 CFL Pumping Lemma . 57

3

1 Finite State (Memory) Automata (Machines)

Lecture 1 - Wednesday, September 03

Definition 1.1: String

A string over an alphabet Σ = {a1, . . . , an} of symbols from Σ.

Definition 1.2: Empty String

The empty string is the string with no symbols and is denoted ε.

Comment 1.1
The set of all strings, including the empty string, over an alphabet Σ is denoted Σ∗.

Definition 1.3: Finite Automaton

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σ→ Q is the transition function,
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

Definition 1.4: Accept

Let M = (Q,Σ, δ, q0, F) be a finite automaton and let w = w1w2 · · ·wn be a string where each wi is a
member of the alphabet Σ. Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists with
three conditions:

1. r0 = q0,
2. δ(ri, wi+1) = ri+1, for i = 0, . . . , n− 1, and
3. rn ∈ F .

Definition 1.5: Regular Language

A language is called a regular language if some finite automaton recognizes it.

Definition 1.6: Nondeterministic Finite Automaton

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where

1. Q is a finite set of states,
2. Σ is a finite alphabet,
3. δ : Q× Σε → P(Q) is the transition function,

4

4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

1.1 What languages can or cannot be accepted by DFAs? Or what is the power
of DFAs?

Lecture 2 - Monday, September 08

In the future, we want to answer the following question: What languages can/cannot be accepted
by normal computers (i.e., algorithms that output 1 on the strings in the language and output 0 otherwise.)

Definition 1.7: Equivalent

Two DFAs/NFAs M1, M2 are equivalent if L(M1) = L(M2), i.e., the language determined by the two
machines are the same.

Theorem 1.1

For every NFA N , there exists an equivalent DFA D. Hence, a language is accepted by an NFA if and
only if it is accepted by a DFA.

Proof. Suppose that N has no ε-transitions. Given the NFA N = (Q,Σ, δ, 0, F) with Q = {0, . . . , n− 1}, we
construct a DFA D = (QD,Σ, δD, q

′
0, FD). The alphabet remains unchanged.

First, we define the set of states of D as

QD
def= {qS | S ⊆ {0, . . . , n− 1}}

Next, we define the start state of D as q′0
def= q{0}.

The main idea is that after reading the input w1 . . . wℓ, the DFA D will end in state qS , where S is
precisely the set of all states in {0, . . . , n− 1} that are reachable in N after processing w1 . . . wℓ.

The transition function of D is then defined by

δD(qS , a) = qS′ , where S′ =
⋃
p∈S

δ(p, a)

Finally, the set of accept states FD consists of all states qS such that S ∩ F ̸= ∅.
As a concluding question, if |F | = t, what can we say about the value of |FD|? ((2t − 1)2n−t).
Now we consider having the ε-transitions: For any set of states S ⊆ {0, . . . , n− 1}, let E(S) contain

all elements of S as well as those that can be reached from S by making one or more ε transitions. Now we
modify δD:

δD(qs, a) = qS′

where S′ =
⋃

p∈S E(δ(p, a)) = E
(⋃

p∈S δ(p, a)
)

.

Question 1.1.

Can you give a DFA with the same number of states as of the underlying NFA (in general)?

Solution. No.

5

Proposition 1.1

If L is regular, L = {binary string x : x /∈ L} is regular.

Proof. If M = (Q,Σ, δ, q0, F) is a FA with L(M) = L. Then define

M ′ = (Q,Σ, δ, q0, F
′) as a FA, where F ′ = Q \ F

It follows that L(M ′) = L.

Definition 1.8: Union, Concatenation, (Kleene) Star

Let A and B be languages. We define the regular operations union, concatenation, and star as
follows:

• Union: A ∪B = {x | x ∈ A or x ∈ B}.
• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.
• Star: A∗ = {x1x2 · · ·xk | k ≥ 0 and each xi ∈ A}.

1.2 The class of regular languages is closed under the union, concatenation,
and star operation.

Theorem 1.2

The class of regular languages is closed under the union operation.

Theorem 1.3

The class of regular languages is closed under the concatenation operation.

Theorem 1.4

The class of regular languages is closed under the star operation.

Question 1.2.

Can you show that the language L = {aℓbℓ : ℓ ≥ 0} is not a regular language?

Proof. Contradiction via pumping lemma.

6

1.2.1 Pumping Lemma

Theorem 1.5: Pumping Lemma

Let L be a regular language. Then there exists an integer p ≥ 1 depending only on L such that every
string w in L of length at least p (p is called the “pumping length”) can be written as w = xyz (i.e.,
w can be divided into three substrings), satisfying the following conditions:

1. |y| ≥ 1
2. |xy| ≤ p
3. (∀n ≥ 0)(xynz ∈ L)

Lecture 3 - Wednesday, September 10

Proof. Let M = (Q,Σ, δ, q0, F) be a finite-state automaton that accepts the regular language L. Let p := |Q|,
and let w = a1a2 · · · an ∈ L be a word of length n ≥ p. Define a sequence of states q0, q1, . . . , qn inductively
by

qi = δ(qi−1, ai) for i = 1, . . . , n

Since the sequence q0, . . . , qp has length p + 1 and since there are only p states in Q, by the pigeonhole
principle there exist indices 0 ≤ i < j ≤ p such that qi = qj . Now define:

x = a1a2 · · · ai, y = ai+1ai+2 · · · aj , z = aj+1 · · · an

Then w = xyz, |xy| ≤ p, and |y| ≥ 1. Moreover, since qi = qj , reading y causes the machine to loop back to
qi, so for all k ≥ 0,

δ(q0, xy
kz) = δ(qi, y

kz) = δ(qi, z)

But δ(qi, z) = qn ∈ F , since w ∈ L. Hence, xykz ∈ L for all k ≥ 0, and we obtain the desired result.

Exercise 1.1

Show that the language L = {0k : k is composite} is not regular.

Proof. Show that the language L′ = {0k : k is prime} is not regular, and use the fact that the complement
of a regular language is regular to show that L is not regular either.

Exercise 1.2

Show whether the language L = {binary strings with equal number of 01 and 10 substrings} is regular.

7

1.3 Regular Expression

Definition 1.9: Regular Expression

R is a regular expression over an alphabet Σ if R is:

1. ε or ∅ or a for some a ∈ Σ.
2. (R1 ∪R2) or (R1 ◦R2), where R1 and R2 are regular expressions.
3. (R∗), where R is a regular expression.

Theorem 1.6: Precedence Order

Star, then concatenation, then union.

Comment 1.2

If R is a regular language, then
R+ := RR∗

1.3.1 Some Examples and Practices

Example 1.1

For a set A = {a1, . . . , an} we sometimes use A as a regular expression to mean A := a1 ∪ · · · ∪ an.

Example 1.2

Strings over Σ of even length can be expressed as (ΣΣ)∗.

Exercise 1.3

Is it true that (0∗1∗)∗ = {0, 1}∗?

Solution. Yes, because (0∗1∗)∗ = (0∗1∗)(0∗1∗) · · · (0∗1∗).

Exercise 1.4

What is the regular expression for strings not ending with 11.

Solution. ε ∪ {0, 1} ∪ {0, 1}∗(00 ∪ 01 ∪ 10).

Exercise 1.5

What is the regular expression for strings who has exactly one 1 and an even number of 0s.

Solution. (00)∗1(00)∗ ∪ (00)∗010(00)∗.

8

Exercise 1.6

Find the regular expression for strings containing at most one pair of consecutive 0s.

Solution. (1 ∪ 01)∗(ε ∪ 0 ∪ 00)(1 ∪ 10)∗.

Theorem 1.7

A language is regular if and only if some regular expression describes it.

Proof. [⇐=]: Easy.
[=⇒]: Stronger result to prove: if A is recognized by a generalized finite state automaton, then A is also
described by a regular expression. A generalized finite state automaton is can be transformed such that

1. The start state has transition arrows going to every other state but no arrows coming in from any
other state.

2. There is only a single accept state, and it has arrows coming in from every other state but no arrows
going to any other state. Furthermore, the accept state is not the same as the start state.

3. Except for the start and accept states, one arrow goes from every state to every other state and also
from each state to itself.

Then we can get rid of all states qrip /∈ {q0, qaccept} one by one.

9

2 Context Free Grammars and Languages

Lecture 4 - Monday, September 15

Definition 2.1: Context-Free Grammar

A context-free grammar is a 4-tuple (V,Σ, R, S), where

1. V is a finite set called the variables,
2. Σ is a finite set, disjoint from V , called the terminals,
3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals,

and
4. S ∈ V is the start variable.

Let G = (V,Σ, R, S) be a context-free grammar. Let A be a variable and A → γ be a rule in R.
Then for α, β ∈ (V ∪Σ)∗ we write αAβ ⇒G αγβ and say αγβ is derivable from αAβ in one step. A sequence
of the form S ⇒G w1 ⇒G · · · ⇒G wn is called a derivation in n steps. We let ⇒∗G denote derivability in zero
or more steps. Language of G is

L(G) = {x ∈ Σ∗ : S ⇒∗G x}

Definition 2.2: Context-Free Language

A language R is context-free if R = L(G) for some CFG G.

2.1 Example CFGs

2.1.1 CFG for A = {x : x has same number of of 0s and 1s}

Grammar G = ({S}, {0, 1}, P, S) with P being:

S → 0S1 | 1S0 | SS | ε

Proof. [L(G) ⊆ A]: suppose x ∈ L(G); we show x ∈ A by induction on the length ℓ of the shortest deriving
path for x. Base: ℓ = 1: then x = ε, and so x ∈ A.
ℓ ≥ 2: consider all possible “first moves”:

1. S ⇒G 0S1⇒∗G 0y1 and x = 0y1. We have S ⇒∗G y in ℓ− 1 steps, and so y ∈ A, and hence x ∈ A.

2. S ⇒G 1S0⇒∗G 1y0 and x = 1y0. Like above, y ∈ A, and hence x ∈ A.

3. S ⇒G SS ⇒∗G yz and x = yz. Then, S ⇒∗G y and S ⇒∗G z, each derivable in at most ℓ − 1 steps.
Thus, y ∈ A and z ∈ A, and hence x ∈ A.

Question 2.1. Why not induction on |x|?

Case 3 will go wrong: it might be that, e.g., y = ε and hence x = z, so we can’t inductively argue
that z ∈ A.

[A ⊆ L(G)]. Suppose x ∈ A. We prove x ∈ L(G) by induction on ℓ = |x|. Base: |x| = 0: then
x = ε, and so x ∈ L(G).

10

|x| = 2(k + 1) and k ≥ 0. Then:

1. x = 0y1: then y ∈ A and |y| = 2k, and by induction y ∈ L(G), and so x ∈ L(G).

2. x = 1y0: then y ∈ A and |y| = 2k, and hence x ∈ L(G), like above.

3. x = 0y0 or x = 1z1. In this case we can write x = x′x′′ such that x′, x′′ ∈ A (Why?) and |x′| ≥
2, |x′′| ≥ 2. By induction, x′, x′′ ∈ L(G), and so x ∈ L(G).

Why (proof)? Suppose x = 0y0. For 1 ≤ i ≤ |x|, let

∆i = #0’s−#1’s in x[i] def= x1 · · ·xi

We have ∆1 = 1, ∆|x|−1 = −1 and for all 1 ≤ i < |x|: |∆i − ∆i+1| = 1. Thus, for some 1 ≤ i ≤ |x| − 1:
∆i = 0, and hence x[i] ∈ A.

Similar proof if x = 1y1.

2.1.2 CFG for Palindromes: A = {w ∈ {a, b}∗ : wR = w}

Grammar G = ({S}, {0, 1}, P, S) with P being:

S → 0S0 | 1S1 | 0 | 1 | ε

Proof. [L(G) ⊆ A]. Let x ∈ L(G). We show x ∈ A by induction on the length ℓ of the shortest deriving
path for x.

ℓ = 1, then x = ε, x = 0 or x = 1. Thus, x ∈ A.

ℓ ≥ 2, consider all possible first moves:

1. S ⇒G 0S0⇒∗G 0y0 and x = 0y0. We have S ⇒∗G y in ℓ− 1 steps, and so y ∈ A, and hence x ∈ A.

2. S ⇒G 1S1⇒∗G 1y1 and x = 1y1. We have S ⇒∗G y in ℓ− 1 steps, and so y ∈ A, and hence x ∈ A.

[A ⊆ L(G)]. Suppose x ∈ A. We prove x ∈ L(G) by induction on |x|.

1. Base: |x| = 0 or |x| = 1: then x = ε, x = 0 or x = 1, and so x ∈ L(G).

2. If |x| ≥ 2: then either x = 0y0 or x = 1y1 for some palindrome y. By the induction hypothesis,
y ∈ L(G), namely S ⇒∗G y.

(a) If x = 0y0, then S ⇒G 0S0⇒∗G 0y0, and hence x ∈ L(G).

(b) If x = 1y1, similarly to (a).

Question 2.2. Why not the base induction only over x = ε (i.e., |x| = 0)?

Item (2) assumes |x| ≥ 2, and so doesn’t apply to x = 0 or x = 1.

2.1.3 CFGs for A = {w ∈ {(,)}∗ : w is balanced}

11

Comment 2.1

Formal definition: Map “(” 7→ 0 and “)” 7→ 1. For w, let w[i] = w1 · · ·wi. Let ∆i(w) = #0s−#1s in w[i].
Then

A = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s, and ∀i ≤ |x| − 1 : ∆i(w) ≥ 0 }

Grammar G1 : S → (S) | (SS) | SS | ε. Let the underlying language be L1.
Grammar G2 : S → (S)S | ε. Let the underlying language be L2.

Exercise 2.1

Show that L1 = L2 = A.

2.2 Parse Tree

A parse tree is a way of representing derivations which ignores the order followed by variables when they are
expanded.

Definition 2.3: Parse Tree

Let G = (V,Σ, P, S) be a CFG. A tree T is a parse tree for G if

1. each internal node of T are labeled by a variable.

2. each leaf is labeled by a terminal or ε. If a leaf is labeled ε, then it is the only child of its parent.

3. if an internal node is labelled by A, and its children are labeled (in order) by X1, . . . , Xk, then
A→ X1 . . . Xk is a rule in P .

2.2.1 Yield of a Parse Tree

Definition 2.4: Yield of a Parse Tree

The yield of a parse tree is the concatenation of all terminals in the leaves, from left to right.

Comment 2.2

The yield is always in the language of the grammar.

2.3 Ambiguous vs Non-Ambiguous Grammar

Definition 2.5: Leftmost Derivation

The leftmost derivation is the derivation in which the leftmost variable in the currently derived
string is expanded.

12

Theorem 2.1

For each grammar G = (V,Σ, P, S) and string w ∈ Σ∗, w has two distinct parse trees iff w has two
distinct leftmost derivations from S.

Definition 2.6: Ambiguous

A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost
derivations. Grammar G is ambiguous if it generates some string ambiguously.

Lecture 5 - Wednesday, September 17

2.4 Power and Limitations of CFGs

2.4.1 Pumping Lemma (for CFL)

Theorem 2.2: Pumping Lemma

If L is a CFL there is a number p such that for all s ∈ L with |s| ≥ p we have that

1. s = uvwxy

2. |vx| > 0

3. |vwx| ≤ p

4. uvnwxny ∈ L for all n ≥ 0

Proof. If L is a CFL, there is some grammar G for L. The arity of G is the length k of the longest right-hand
side in G. Let n be number of variables in G. Consider a string s in L with length greater than or equal to
p = kn+1. The parse tree for this string has a height greater than or equal to n+ 1. This means that some
path from the root down to a leaf in the parse tree has at least n + 1 internal nodes on the path. This in
turn means that at least one variable along that path has to be repeated. Let A be the first variable on that
path to get repeated as we work our way up from the leaf to the root along that path.

This results in a parse tree that contains structures like this:

S

u A

v A

w

x

y

13

If this is a valid parse tree, then these are also valid parse trees for the string uv2wx2y and uwy respectively:
S

u A

v A

v A

w

w

x

y
S

u A

w

y

2.4.2 A = {0i1i2i : i ≥ 0} is not a CFL

Proof. Let p be as in the pumping lemma. Define s = 0p1p2p. By pumping lemma, we may write
α = uvxyz for some x, y, z such that

1. |vxy| ≤ p; and

2. |vy| ≥ 1; and

3. uvixyiz ∈ E for all i ≥ 0.

However, it is impossible: vxy cannot contain all the three symbols {0, 1, 2}, and so for some b ∈ {0, 1, 2},
the pumped-up string uv2xy2z will have less b symbols than some symbol in {0, 1, 2} − {b}.

2.4.3 A = {ww : w ∈ {0, 1}∗} is not a CFL

Proof. Let p be as in the pumping lemma. Define s = 0p1p0p1p and note |s| ≥ p. By pumping lemma,
we may write s = uvxyz for some x, y, z such that

1. |vxy| ≤ p; and

2. |vy| ≥ 1; and

3. uvixyiz ∈ A for all i ≥ 0.

Now we have three cases:

• If vxy is entirely contained in first half, then the second half of uv2xy2z = 0p+k1p+f 0p1p where
k + f ≤ p. Thus, the second half starts with 1 but the first half with 0, so it isn’t in A.

• If vxy is entirely contained in second half, same as above.

• If vxy contains some symbols from first half and some from second half, then setting i = 0, we
get 0p1k0t1p, where either k < p or t < p.

Either case, it is not in A.

14

2.5 Closure Properties of CFLs

2.5.1 CFLs are closed under Union, Concatenation, and Star

For G1 = (V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2), let Sstart /∈ V1 ∪ V2, we have

1. Union: the union is

(Sstart ∪ V1 ∪ V2,Σ1 ∪ Σ2, R1 ∪R2 ∪ {Sstart → S1} ∪ {Sstart → S2}, Sstart)

2. Concatenation, the concatenation is

(Sstart ∪ V1 ∪ V2,Σ1 ∪ Σ2, R1 ∪R2 ∪ {Sstart → S1S2}, Sstart)

3. Star: the star L(G)∗ is

(Sstart ∪ V1,Σ1, R1 ∪ {Sstart → S1Sstart | ε}, Sstart)

2.5.2 CFLs are NOT closed under Intersection

We know that A = {0i1i2j : i, j ≥ 0} is context free. Similarly, B = {0j1i2j : i, j ≥ 0} is also context free.
We know that A ∩B = {0i1i2i : i, j ≥ 0} isnt context free, serving as a counterexample.

2.5.3 CFLs are NOT closed under Complementation

2.6 CFLs are more powerful than regular languages

Lecture 6 - Monday, September 22

2.6.1 Regular Expressions to CFGs

∅ can be generated by a CFG with no production rules. a and ε can be generated by a CFG S → a and by
S → ε, respectively. Now suppose R1 is generated by (V1,Σ, P1, S1) and R2 is generated by (V2,Σ, P2, S2),
where V1 ∩ V2 = ∅.

• R1 ∪ R2 can be generated by
(
V1 ∪ V2 ∪ {Snew}, Σ, P1 ∪ P2 ∪ {Snew → S1 | S2}, Snew

)
, where Snew /∈

V1 ∪ V2.
• R1 ·R2 can be generated by

(
V1∪V2∪{Snew}, Σ, P1∪P2∪{Snew → S1S2}, Snew

)
, where Snew /∈ V1∪V2.

• R∗1 can be generated by
(
V1 ∪ {Snew}, Σ, P1 ∪ {Snew → ϵ | S1Snew}, Snew

)
, where Snew /∈ V1.

2.6.2 DFAs to CFGs

We start with a DFA M = (Q,Σ, δ, q0, F).

1. Make a variable Ri for each qi ∈ Q.
2. Add the rule Ri → aRj if δ(qi, a) = qj .
3. Add the rule Ri → ϵ if qi ∈ F .
4. The start variable is R0.

To prove that this is correct, we use induction, which is left as an exercise.

15

2.6.3 Algorithmic Aspects of DFAs/CFLs

Question 2.3. Given a DFA M , can we check if L(M) = ∅?

Yes. Check if an accepting state is reachable from the start state.

Question 2.4. Given a CFG G, can we check if L(G) = ∅?

Algorithm: Let Y = ∅. While there exists A→ γ, such that γ has only terminals and/or variables in
Y , add A to Y . Check if start variable is in Y .

Question 2.5. Given two DFAs M1,M2, can we check if L(M2) = L(M2)?

We have L(M1) = L(M2) iff both L(M1) ∩ L(M2) = ∅ and L(M1) ∩ L(M2) = ∅. Use Questino 2.3
answer to check if L(M1) ∩ L(M2) = ∅ and L(M1) ∩ L(M2) = ∅.

Question 2.6. Given two CFGs G1, G2, can we check if L(G2) = L(G2)?

Comment 2.3
We will prove this later.

2.6.4 Intersection of Regular Languages and CLFs

We want a PDA that accepts L(M) ∩ L(P), where

• M = (QM ,Σ, δM , qM
0 , FM) is a DFA, and

• P = (QP ,Σ,Γ, δP , q
P
0 , Z0, FP) is a PDA.

We define the new PDA P ′ as follows:

• States: pairs of a DFA state and a PDA state:

Q′ = QM ×QP

• Start state: (qM
0 , qP

0).

• Stack alphabet: the same as P , i.e. Γ.

• Transition function:
When M reads a symbol a ∈ Σ and P makes a transition on a with stack action, we combine them: If

δM (qM , a) = q′M

δP (qP , a,X) ∋ (q′P , γ),

then in P ′ we define
δ′((qM , qP), a,X) ∋

(
(q′M , q′P), γ

)
.

That is, M ’s state updates deterministically, while P ’s state and stack update as before.

• Accepting states:
F ′ = FM × FP .

16

3 Push Down Automata

Imagine a FA with an unlimited extra “stack” memory. When reading something from the
input we may also look at the top element in the stack, and we can pull that out or push something
new.

Example 3.1: A = {0n1n : n ≥ 0}

Start state q0 and stack initialized to be empty. Start by putting $ on the stack without reading any
input symbol. Keep reading 0s and push 0 into the stack. When hitting a 1 from the input, pop 0
from the stack for any 1 read from the input. When hitting $ on the stack go to accept state.

3.1 PDA Definition

Definition 3.1: PDA

A PDA is a 6-tuple P = (Q,Σ,Γ, δ, q0, F) where

Q = finite set of states; q0 = initial state;
Σ = alphabet of input symbols; F = accept states;
Γ = alphabet of stack symbols; δ = transition function

where the transitions is defined as

δ(q, a, α) = (q′, β) for q, q′ ∈ Q, a ∈ Σ ∪ {ε}, α, β ∈ Γ ∪ {ε}

to mean that if α ∈ Γ: if the top symbol is α, pop it and push β; If α = ε, read nothing from stack
and push β.

Note 3.1

ε appears as an option in three places:

• Not reading an input symbol.
• Not reading (popping) a stack symbol.
• Not pushing a stack symbol on the stack.

3.1.1 Example PDAs
Example: A = {0n1n : n ≥ 1}

Example 3.2

For A = {0n1n : n ≥ 1}, the corresponding PDA is

P = (Q = {q0, q1, q2, q3},Σ = {0, 1},Γ = {$, X}, δ, {q0}, {q3})

17

q0start q1 q2 q3
ε, ε→ $

0, ε→ X

1, X → ε

1, X → ε

ε, $, ε

Example: A = {0n1n : n ≥ 0}

Similar as above, the only difference is to

replace (1, X → ε) between q1 and q2 with (ε, ε→ ε).

3.2 PDAs are Non-Deterministic

Example 3.3

PDAs are non-deterministic: We might have transitions:

q0start q1

q2

q3

a, α→ β

a, α→ γ

a, ε→ ρ

3.2.1 Example PDAs
Example: Palindromes {w ∈ {0, 1}∗ : w = wR}

Example 3.4

For {w ∈ {0, 1}∗ : w = wR}, we have the following PDA:

q0start q1

q2q3

ε, ε→ $
0, ε→ 0 or 1, ε→ 1

ε, ε→ ε or 0, ε→ ε or 1, ε→ ε

0, 0→ ε or 1, 1→ ε
ε, $→ ε

18

Example: L = {aibicj : i, j ≥ 0} ∪ {aibjcj : i, j ≥ 0}

Example 3.5

q0start q1 q2 q3 q4

q5 q6 q7

ε, ε→ $

a, ε→ ε

ε, ε→ ε

b, ε→ b

ε, ε→ ε

c, b→ ε

ε, $→ ε

ε, ε→ $

a, ε→ a

ε, ε→ ε

b, a→ ε

ε, $→ ε

c, ε→ ε

Lecture 7 - Wednesday, September 24

Example: A = {x ∈ {0, 1}∗ : x is not of the form ww}

Example 3.6

If |x| is odd, then x ∈ A, so we just do it for the case |x| is even and |x| ≥ 2. (We can union two
PDAs easily.) In the case when |x| is even, it is in A if x = uv such that u = u1au2, v = v1bv2, and
|u1v2| = |v1u2| and a ̸= b. The PDA guesses the positions of a and b, checks if a ̸= b. The PDA is:

q0start q1

q2 q3 q4

q5

q6 q7 q8

ε, ε→ $
0/1, ε→ X

1, ε→ ε

0/1, X → ε

ε, $→ $

0/1, ε→ X

0, ε→ ε

0/1, X → ε

ε, $→ $

0, ε→ ε

0/1, X → ε

ε, $→ $

0/1, ε→ X

1, ε→ ε

0/1, X → ε

ε, $→ $

3.3 PDAs and CFGs have the same power

Theorem 3.1

The class of languages accepted by PDAs is exactly CFL.

Proof. We first show how to build a PDA from a CFL.

19

1. δ(qstart, ϵ, ϵ) = {(qloop, S$)} {Place $ and S on the stack}

2. δ(qloop, ϵ, A)={(qloop, u) :A→u is a rule of G} {select a rule with A on LHS and push RHS onto stack}

3. δ(qloop, a, a) = {(qloop, ϵ)}. {match terminal symbol in input to one in rule}

4. δ(qloop, ε, $) = {(qaccept, ϵ)} {accept if stack empty and input read}

Now we show PDAs P to CFGs G. We assume P is of the following form:

1. Has a single accept state qaccept

2. Empties its stack before accepting

3. Either pushes a symbol onto the stack or pops one off, but not both in one move.

Suppose P = (Q,Σ,Γ, δ, q0, qaccept).

• For every p, q ∈ Q, add a variable Apq which is to generate all strings which take p with empty stack
to q with empty stack.

• Start variable: Aq0qaccept .

• Add App → ϵ to the production rules for all p ∈ Q.

• Adding productions rules whose lefthand side is Apq for all p, q ∈ Q (including the case p = q)

• Idea: Any x that takes p with empty stack to q with empty stack, the first move is a push and the last
is a pop. The last symbol popped is either the first symbol (first case), or not (second case). We will
add rules to account for both first case and second case.

[Case one]: If for r, s ∈ Q and a, b ∈ Σ ∪ {ε}:

pstart r s q
a, ε→ 2 b,2→ ε

We add
Apq → aArsb

Interpretation: if a string y takes r with empty stack to s with empty stack, then ayb takes p with empty
stack to q with empty stack.
[Case two]:

For all f ∈ Q, add Apq → ApfAfq

Interpretation: if a string y0 takes p with empty stack to f with empty stack and y1 takes f with empty
stack to q with empty stack then y0y1 takes p with empty stack to q with empty stack.
[x ∈ L(G)⇒ x ∈ L(P)]: If Apq ⇒∗ x, then x can bring P from p with empty stack to a with empty stack.
The proof is by induction on # steps ℓ in Apq ⇒∗ x.

• Base: ℓ = 1, then q = p and x = ϵ (i.e., App → ϵ). Obviously, ϵ can bring p with empty stack (E/S) to
p with empty stack!

• Assume true for ℓ. Suppose Apq ⇒∗ x takes ℓ+ 1 steps. Two cases:

20

1. Apq ⇒ aArsb⇒ℓ ayb and x = ayb. By induction hypothesis, y bring r with E/S to s with empty
stack. Since Apq → aArsb is a rule of G, δ(p, a, ϵ) contains (r,2) and δ(s, b,2) contains (q, ϵ), for
some stack symbol 2. Thus, ayb bring p with E/S to p with E/S.

2. Apq ⇒ ApfAfq ⇒ℓ x, then x = y1y2 and Apf ⇒≤ℓ y1 and Afq ⇒≤ℓ y2. By induction hypothesis:
y1 bring p with E/S to f with E/A, and y2 bring f with E/S to q with E/A. Thus, y1y2 bring p
with E/S to q with E/A.

[x ∈ L(P)⇒ x ∈ L(G)]: Out claim is that if x can bring p with E/S to q with E/S, Apq ⇒∗ x. The proof
is by induction on # steps ℓ in going from p with E/S to q with E/S on input x.

• ℓ = 0: then p = q, and x = ϵ (if x ̸= ϵ or if p ̸= q, then ℓ ≥ 1). We have App → ϵ.

• Suppose true for ℓ. Two cases:

1. Some 2 is pushed in first move, and not popped until the very last move. Then, for some r, s,
(r,2) ∈ δ(p, a, ϵ) and (q, ϵ) ∈ δ(s, b,2) and x = ayb for a, b ∈ Σ ∪ {ϵ}. Thus, we can go from r

with E/A to s with E/A in ℓ steps; by induction hypothesis, Ars ⇒∗ y. Since Apq → aArsb is a
production rule, Apq ⇒∗ x.

2. x = y1y2 and stack becomes empty in a middle state f while having read y1. By induction
hypothesis, Apf ⇒∗ y1 and Afq ⇒∗ y2. Since Apq → ApfAfq, we have Apq ⇒∗ x.

21

4 First Midterm Practices
Exercise 4.1

Let L1 = {w ∈ {0, 1}∗ | w has an equal number of 0’s and 1’s }
and L2 = {w ∈ {0, 1}∗ | w has at most 100 occurrences of 100 }.
Then L1 ∪ L2 is context free and L1 ∩ L2 is not context free. T F

Proof. False. Both L1 and L1 are context free, and L2 is regular. The union of two CFLs is CF. The
intersection of a CFL and a regular language is CF.

Exercise 4.2

Let L1 = {ww′wR | w,w′ ∈ {0, 1}∗ }, L2 = {ww′w | w,w′ ∈ {0, 1}∗ }, and L3 = {w | w has 01 as a substring}.
Then L1 ∩ L3 is context free but L2 ∩ L3 is not. T F

Proof. False. L1 = L2 = {0, 1}∗. So L1 ∩ L3 = L2 ∩ L3 = L3, and L3 is regular!

Exercise 4.3

If A and B are regular, then C = {w1w2 | w1 ∈ A, w2 ∈ B, |w1| = |w2| } is necessarily context free.
T F

Proof. True. Think about this PDA: example 3.6. We were guessing where the middle is.

Exercise 4.4

L = { aibjcfdkeh | i+ k = j + f + h } is context free. T F

Proof. True.

Exercise 4.5

Every DFA can be converted into an equivalent DFA with no incoming edges to the start state. T F

Proof. True. Make an identical copy for every state.

Exercise 4.6

Give a context free grammar and a PDA for

A = { 0i1j2k | i ≥ j or i < k }.

For example, ϵ ∈ A and 2 ∈ A, but 1 /∈ A. No need to justify why your CFG and PDA work.

22

Proof. We have the following CFG
S → V | U
V → S′0 S

′
1

S′0 → 0S′0 1 | 0S′0 | ϵ
S′1 → 2S′1 | ϵ
U → U 2 | S′2
S′2 → 0S′2 2 | S′3
S′3 → 1S′3 | ϵ

and we have the following PDA:

q0start q1 q2
ε, ε→ $

0, ε→ #

ε, ε→ ε

1,#→ ε

2/ε,#→ ε

2/ε, $→ ε

2, ε→ ε

q′1 q′2 q′3

ε, ε→ $

0, ε→ #
ε, ε→ ε

1, ε→ ε

ε, ε→ ε

2,#→ ε

2, $→ ε

2, ε→ ε

Exercise 4.7

Σ = {a, b, c} and L = {anbncn : n ≥ 0}. Is L context-free?

Proof. No, pick apbpcp and prove it’s not via pumping lemma.

Exercise 4.8

What is the PDA recognizing L = {a2ibi : i ≥ 0}?

Exercise 4.9

Show that if L ⊆ {a}∗ is context free, then L is regular.

23

5 Turing Machines: Computing with Unlimited Memory

Lecture 8 - Monday, September 29

Comment 5.1

We use ⊔ to denote blank symbol. The tape initially has the input written from left to right starting
from the leftmost cell, and the rest of the cells are initially filled with ⊔.

Definition 5.1: Turing Machine

A Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where Q is the set of states, Σ: input symbols
where

• Q: states, q0 ∈ Q: start state, qaccept ∈ Q accept state, qreject ∈ Q reject state.

• Σ: input symbols, where ⊔ /∈ Σ.

• Γ: tape symbols, where ⊔ ∈ Γ. Also, Σ ⊆ Γ.

• δ
(
(Q− {qaccept, qreject})× Γ

)
→ Q× Γ× {L,R} (L = Left and R = Right)

Comment 5.2

Tape head initially scanning leftmost tape square.

Possible outcomes of running M(x):

• Accept: halting and ending up in qaccept.

• Reject: halting and ending up in qreject.

• Loops forever: considered rejection (rejection without halting).

Example 5.1: Looping forever

q

0 1

q q′

0/0, R

1/1, L

Definition 5.2: Turing Recognize

We say a TM M recognizes language A if L(M) = A.

24

Definition 5.3: Turing Recognizable

A is Turing recognizable if for some TM M we have L(M) = A.

Definition 5.4: Decider

We say a TM M is a decider if it halts on all strings (i.e., never loops forever on any input).

Definition 5.5: Decide

We say a TM M decides language A if L(M) = A and M is a decider.

Definition 5.6: Turing Decidable

A is Turing decidable if for some decider TM M we have L(M) = A.

5.1 TMs vs PDAs/ DFAs

Discovery 5.1

TMs allow us to use an infinite amount of space which we can freely access, unlike PDAs and DFAs.

Discovery 5.2

We can accept inputs under TMs without reading the input in full, but we can never do this under
DFAs/ PDAs! See below for example.

Example 5.2

Suppose we have a language L = {x : x starts with 1}. Then we can simply define the turing machine
with:

δ(q0, 0) = (qreject,#, R) and δ(q0, 1) = (qaccept,#, R)

5.1.1 Designing Turing Machine for Languages, Examples

Note 5.1

If δ(q, a) for q /∈ {qaccept, qreject} is left undefined, it moves to the reject state qreject.

25

5.1.2 A = {aibi : i ≥ 1} and its Turing Machine

q0 q1 q2

q3qf

a/x, R

a/a, R, or b/b, R

⊔/⊔, L

y/y, L

b/y, L

a/a, L, or b/b, L

x/x, R

y/y, R

5.1.3 A = {aibici : i ≥ 1} and its Turing Machine

q0 q1 q2

q3q4 qf

a/x, R

a/a, R, or y/y, R

b/y, R
b/b, R, or z/z, R

c/z, L

a/a, L, or b/b, L, or z/z, L, or y/y, L

x/x, R

y/y, R

y/y, R, or z/z, R

⊔/⊔, R

5.1.4 L = {ww : w ∈ {0, 1}∗} and its Turing Machine

Exercise 5.1

This is left as an exercise. The idea is: First, mark the symbol which starts the second w, then compare
each symbol of the first w with its corresponding symbol in the second w.

26

5.1.5 Church Turing Thesis

Theorem 5.1: Church Turing Thesis

Any function on the natural numbers can be calculated by an “effective” method if and only if it is
computable by a Turing machine.

5.1.6 Variants of Turing Machines

• K tape Turing Machine

• 1-tape one-way infinite Turing Machine (Sipser’s Book): A single tape for input, work, and output

• 1-tape two-way infinite TMs

Interestingly, all the above are “equivalent”:

Proposition 5.1

For every K-tape TM M , there exists a 1-tape S such that ∀ x, M(x) = S(x).

Lecture 9 - Wednesday, October 01

Proof. S has an extended alphabet: including the alphabet Σ of M , a new symbol #, and the primed version
of each symbol in Σ. S contains a copy of tapes separated by #, and it replaces an a in one region with an
a′ if the head in M points to a in that tape.

• Simulating a step in M : S locates all k marked places, remembers in its state the contents of each,
and then carries out the actions according to M .

• It may need to shift whole chunks of tape contents to make room for a longer configuration.

If M takes time T on an input, S takes O(T 2).

5.2 Non-Deterministic TMs (NTMs)

Definition 5.7: Non-deterministic Turing Machine

In a non-deterministic turing machine, the transition is replaced by

δ : Q \ {qaccept, qreject} × γ → P (Q× γ × {L,R})

A NTM M accepts a string w if some sequence of moves from the initial ID with w as input leads
to the accept state. If other sequences on w lead to nonaccept states, it’s irrelevant.

Theorem 5.2

A is Turing recognizable if and only if A is accepted by an NTM TM.

27

5.2.1 Example A = {Composite numbers}

A NTM for A: On a given input n, non-deterministically choose two numbers p and q and write their
binary representation on the tape. Multiply p and q on the tape, and check whether n = pq.

5.3 Is every language recognizable?

Question 5.1.

Is every language recognizable?

Here we show the existence of unrecognizable languages by showing that the number of TMs ≪ the
number of languages over {0, 1}. It suffices to prove that any TM may be represented as a finite string over
{0, 1}.

Equivalently, we can show that there exists a bijection T from the set of all natural numbers N to
TMs (the set of all TMs or all recognizable languages is countably infinite). We also show that we cannot
“list” the set of all languages (the set of all languages is uncountably infinite).

We know that there are uncountably many binary strings by the classical diagnolization technique.

Comment 5.3

We first present undecidable languages and will then show how to build unrecognizable languages.

5.3.1 First undecidable problem

For a TM M let ⟨M⟩ denote the encoding of M .

Theorem 5.3

SR = {⟨M⟩ : M is a TM and M doesn’t accept ⟨M⟩} is undecidable (SR stands for self-reject).

Proof. Suppose SR is decidable, and N is a decider TM for SR. Since N is a decider, it halts on all given
strings and either accepts or rejects and L(N) = SR. What will happen if we run N on its own encoding
⟨N⟩?

1. If N accepts ⟨N⟩, then by definition of SR, we have ⟨N⟩ /∈ SR, but we know ⟨N⟩ ∈ L(N). A
contradiction.

2. If N rejects ⟨N⟩, then by definition of SR, we have ⟨N⟩ ∈ SR, but we know ⟨N⟩ /∈ L(N). A contra-
diction.

done.

5.3.2 Acceptance problem is undecidable

Theorem 5.4

AT M = {(⟨M⟩, w) : M is a TM and M accepts w} is not decidable.

28

Proof. Suppose H decides AT M , we can build a decider TM N for SR: N(⟨M⟩) simulatea the execution of
N(⟨M⟩, ⟨M⟩) and if H accepts, reject; if H rejects, accept. Therefore, N is a decider (halts on all strings
and accepts/rejects appropriately), because H is so.

Question 5.2.

Is AT M recognizable?

Proof. Yes, we can just run w on M .

5.3.3 An Unrecognizable Language

Question 5.3.

Can we give a concrete unrecognizable language?

Proof. The language SR = {⟨M⟩ : M is a TM and M doesn’t accept ⟨M⟩} is in fact unrecognizable.
Suppose SR is recognizable, and N is a TM for SR. Since N is a recognizer, on ⟨M⟩ ∈ SR it halts

and accepts and on other strings it either rejects, or loops forever. What will happen if we run N on its own
encoding ⟨N⟩?

1. If N accepts ⟨N⟩ then by definition of SR, we have ⟨N⟩ /∈ SR, but we know that ⟨N⟩ ∈ L(N). A
contradiction to L(N) = SR.

2. If N rejetcs ⟨N⟩, then by definition of SR, we have ⟨N⟩ ∈ SR, but we know ⟨N⟩ /∈ L(N). A contra-
diction to L(N) = SR.

3. If N loops on ⟨N⟩ then by definition of SR, we have ⟨N⟩ ∈ SR, but we know ⟨N⟩ /∈ L(N). A
contradiction to L(N) = SR.

as desired.

5.4 Relation between recognizing and deciding

Theorem 5.5

If L and L are both recognizable, then L is decidable.

Proof. Suppose M recognizes L and M ′ recognizes L′. We build a decider N for L: Run M(x) and M ′(x)
in parallel; if M accepts, accept; if M ′ accepts, reject.

Theorem 5.6

If A is decidable, then A is decidable.

Theorem 5.7

If A1 and A2 are decidable, so are A1 ∩A2 and A1 ∪A2.

29

Lecture 10 - Monday, October 06

Theorem 5.8

If A1 and A2 are recognizable, so are A1 ∩A2 and A1 ∪A2.

5.4.1 Halting problem is not decidable

Definition 5.8: Halting Problem

The Halting problem is Ahalt = {(⟨M⟩, w) : ⟨M⟩ is a TM and M halts on w}.

The halting problem is clearly recognizable, since we can just run ⟨M⟩ with input w. However, it is
not decidable:

Theorem 5.9

Halting problem is not decidable.

Proof. Suppose, for contradiction, that the halting problem is decidable. Then there is a TM

H(⟨M⟩, w) =

accept if M halts on input w,
reject if M does not halt on input w.

Using H, define a new TM D which, on input ⟨M⟩, does the following:

D(⟨M⟩) : Run H(⟨M⟩, ⟨M⟩).

If H accepts, then loop forever.
If H rejects, then accept.

Now analyze D on its own description ⟨D⟩. (1) If H(⟨D⟩, ⟨D⟩) accepts, then by definition D halts on ⟨D⟩.
But then D’s code says to loop forever in this case, a contradiction.
(2) If H(⟨D⟩, ⟨D⟩) rejects, then by definition D does not halt on ⟨D⟩. But then D’s code says to accept in
this case, so D halts, again a contradiction.

5.4.2 An undecidable language not involving TMs

Theorem 5.10

ALLcfg = {G : G is a CFG and L(G) = Σ∗} is undecidable.

Proof. LetA∗T M be {(⟨M⟩, w) : ⟨M⟩ is a TM and M does not accept w}, and let S = {(⟨M⟩, w) : M is a TM}.
Hence we know that

AT M = A∗T M ∩ S

If A∗T M is decidable, then A∗T M is decidable. Because S is also decidable, then AT M is also decidable.
However, recall that acceptance problem is undecidable (see section 5.3.2), so we know that A∗T M has to be
undecidable.

30

We wish to design a PDA P such that L(P) = Σ∗ if and only if (M,w) ∈ A∗T M . We reduce from
the undecidable language

A∗T M = { ⟨M,w⟩ : M does not accept w }

to ALLcfg. Given ⟨M,w⟩, we effectively build a PDA (equivalently a CFG) P such that

L(P) = Σ′∗ ⇐⇒ ⟨M,w⟩ ∈ A∗T M ,

where Σ′ is the alphabet we define below. This gives a mapping reduction A∗T M ≤m ALLcfg and hence
proves ALLcfg undecidable.

Computation histories. Let Γ be the tape alphabet of M and Q its set of states. A configuration
of M is a string over Γ ∪ Q with exactly one state symbol indicating the head position. Fix a separator
symbol # not in Γ ∪Q and put Σ′ = Γ ∪Q ∪ {#}. A string

H = C0#C1# · · ·#Ck ∈ (Σ′)∗

is an accepting computation history of M on w if: (i) C0 is the initial configuration on input w, (ii) Ck is an
accepting configuration, and (iii) for each i, Ci ⊢ Ci+1 is a single valid move of M .

Let ACC(M,w) denote the set of all such histories (possibly empty).
A CFL covering all “bad” strings. We construct a CFL B (via a PDA) such that

B = (Σ′)∗ iff ACC(M,w) = ∅,

and otherwise B = (Σ′)∗ \ ACC(M,w). We obtain B as a finite union of CFLs capturing different ways a
string fails to be a valid accepting history:

B1 = {strings not of the block form C0#C1# · · ·#Ck},

B2 = {strings whose first block C0 is not the correct initial config on w},

B3 = {strings whose last block Ck is not an accepting configuration},
B4 = {strings where for some i, the step Ci ̸⊢ Ci+1}.

The languages B1, B2, B3 are regular (hence context-free). For B4, we use the standard local-check construc-
tion: a PDA can nondeterministically choose an index i and a head neighborhood and verify, symbol-by-
symbol, that Ci+1 does not follow from Ci by one move of M (split into finitely many subcases for left/right
moves and tape updates). Each subcase is context-free; their union is context-free. Thus B4 is CFL. Let

B = B1 ∪ B2 ∪ B3 ∪ B4,

which is a finite union of CFLs and hence a CFL. We can effectively construct from ⟨M,w⟩ a PDA P with
L(P) = B.

Correctness of the construction. If M does not accept w, then there is no accepting history,
i.e., ACC(M,w) = ∅. Every string necessarily violates at least one of the conditions (i)–(iii), hence lies in
B, so L(P) = B = (Σ′)∗.

If M does accept w, let H ∈ ACC(M,w) be a valid accepting history. Then H /∈ B (it violates none
of B1, . . . , B4), so L(P) = B ⊊ (Σ′)∗. Therefore

L(P) = Σ′∗ ⇐⇒ M does not accept w.

31

Conclusion. From ⟨M,w⟩ we computably obtain a CFG G (equivalent to P) such that L(G) = Σ′∗

iff ⟨M,w⟩ ∈ A∗T M . If ALLcfg were decidable, this would decide A∗T M , contradicting the undecidability of
A∗T M . Hence ALLcfg is undecidable.

Lecture 11 - Wednesday, October 08

In class midterm today.

Lecture 12 - Monday, October 20

Now the question becomes:

Question 5.4.

Is ALLcfg recognizable?

We know that the set ALLcfg is recognizable because there exists a polynomial time algorithm D

such that
D(G, x) = 1 if and only if x ∈ L(G)

but because ALLcfg is undecidable, so ALLcfg cannot be recognizable.

5.4.3 More Undecidable Problems

Definition 5.9: Post Correspondence Problem

The problem takes input a set of tiles of the form
[u
v

]
, where u and v are strings over Σ∗. The question

is, can we find a sequence
[
u1

v1

]
, . . . ,

[
uk

vk

]
such that u1 · · ·uk = v1 · · · vk.

Theorem 5.11

The Post Correspondence Problem is undecidable.

5.5 Doubly Unrecognizable Problem

There are two proofs:

• Non-constructive proof: the number of recognizable languages and co-recognizable languages is count-
able, while the number of languages in total is uncountable, so there must exists languages that are
doubly unrecognizable.

• Constructive proof.

32

Example 5.3

Consider the language A defined as

A = {(⟨M1,M2⟩) : M1 and M2 are TMs and L(M1) = L(M2)}

We claim that A is doubly unrecognizable.

[A is unrecognizable] Given a recognizer R for A, we build a recognizer R′ for AT M . Let Mempty be a
TM for the empty language. R′(M,w) does the following:

1. Let Mw be a TM that on any input x, erases x and stimulates M(w);
2. Simulate R(Mw,Mempty).

Then

(M,w) ∈ AT M ⇐⇒ M does not accept w ⇐⇒ L(Mw) = ∅ ⇐⇒ (MW ,Mempty) ∈ A

[A is unrecognizable] Define language B as

B = {(⟨M1,M2⟩) : M1 and M2 are TMs and L(M1) ̸= L(M2)}

so B is recognizable if and only if A is recognizable, so it suffices for us to show that B is unrecognizable.
Given a recognizer R for B, we build a recognizer R′ for AT M . Let Mall be a TM for the language of all
strings. R′(M,w) does the following:

• Let Mw be a TM that on any input x, erases x and stimulates M(w);
• Stimulate R(Mw,Mall).

Then
(M,w) ∈ AT M ⇐⇒ M does not accept w ⇐⇒ L(Mw) = ∅ ⇐⇒ (MW ,Mall) ∈ B

Example 5.4

Consider the language

L = {(0, G1, G2) : L(G1) = L(G2)} ∪ {(1, G1, G2) : L(G1) ̸= L(G2)}

It is easy to see that L is doubly unrecognizable.

33

6 Computation Complexity

Definition 6.1: Complexity Theory

Complexity theory categorizes decidable problems in terms of how difficult it is to solve them.

Definition 6.2: (Worst Case) Running Time

A deterministic TM M has a (worst case) running time (or time complexity) t(n) if whenever M
is given an input w of length n, M halts after making at most t(n) moves, regardless of whether M
accepts.

Comment 6.1

Different models of TMs give rise to different running times for a problem, but they are polynomially
related. (By default, we measure in terms of single-tape TM).

Example 6.1

A = {0n1n} can be decided in time O(n2) (or O(n logn) with more efforts) on a single-tape TM, but
not in time O(n) on single-tape TMs.

Note 6.1

A t(n) time multitape TM can be simulated via a O(t(n)2) time single-tape TM.

Lecture 13 - Wednesday, October 22

Definition 6.3: Complexity Class

The complexity class DTIME(T (n)) is the class of languages decided by a single-tape deterministic
TM which always halts in O(T (n)) time.

Note 6.2

P is the class of languages that are decidable in polynomial time on a deterministic single-tape TM.
i.e.,

P =
⋃
k∈N

DTIME(nk)

34

6.1 What is potytime and what can be solved in polytime?

Definition 6.4: Polytime

A TM is poly-time if it’s running time is O(nk) for some k.

Thesis: Deterministic poly-time TM’s and the class P adequately capture the intuitive notions of
practically feasible algorithms, and realistically solvable problems, respectively.

6.1.1 Examples of Languages in P

Example 6.2

“Given a graph: is it connected?” – This belongs to P.

Example 6.3

“Given a number: is it prime?” – This belongs to P due to a very smart AKS algorithm.

Example 6.4

CFL ⊆ P. If L is a CFL, it has a CFG G; we can test membership x ∈? L(G) in O(|x|3).

6.1.2 Time Hierarchy Theorem
Theorem 6.1: Time Hierarchy Theorem

Let Dtime(T (·)) be the set of languages that are decidable in time O(T (n)) by a Turing Machine.
Then for all k ∈ N:

Dtime(nk) ⊊ Dtime(nk+1)

Comment 6.2
Informally, the theorem states that in any “reasonable” model of computation (Turing Machine, RAM,
etc.) where computation could be emulated, having sufficiently more “time” implies more “computa-
tional power”.

To prove the above theorem, we will need to introduce universal Turing Machine first.

Theorem 6.2: Efficient Universal Turing Machine

There exists a single-tape TM U such that for every x, α ∈ {0, 1}∗,U(x, α) = Mα(x), where Mα denotes
the TM represented by α.

Moreover, if Mα halts on input x within T steps, then U(x, α) halts within CT log T steps,
where C is a number independent of |x| and depending only on Mα’s alphabet size, number of tapes,
and number of states.

35

Proof of Time Hierarchy Theorem 6.1. The proof is by diagonalization. Fix k ∈ N. Let

A =
{
⟨M⟩ : M(⟨M⟩) rejects in nk+(1/2) steps where n = |⟨M⟩|

}
[A ∈ Dtime(nk+1)] Given an input ⟨M⟩, simulate M on ⟨M⟩ for nk+(1/2) steps and flip the reject/ accept
(if it does not halt, we simply reject). This can be done in time O(nk+(1/2) logn), and hence O(nk+1) on a
deterministic universal TM.
[A /∈ Dtime(nk)] Suppose to the contrary N decides A in time O(nk). On any x ∈ A, N(x) accepts (halts
in qaccept in O(nk) time), and on any input x /∈ A, N(x) rejects (halts in qreject in O(nk) time). We have
two cases

1. N(⟨N⟨) rejects in time O(nk), then ⟨N⟩ ∈ A, contradicting L(N) = A;
2. N(⟨N⟨) accepts in time O(nk), then ⟨N⟩ /∈ A, contradicting L(N) = A;

6.2 Is it easier to verify a solution than to find it?

6.2.1 Class NP (Non-Deterministic Polynomial Time)

Definition 6.5: NP

A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N → N and a poly-time DTM M

(called a verifier) such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1, where we call u a witness or ciertificate.

Example 6.5

The language of graph isomorphism, L = {(G1, G2) : G1 ∼= G2}, is in NP.

• input x represents the adjacency matrices of G1 and G2;
• input u represents a potential mapping of the nodes in G1 and G2;
• M(x, u) checks if the mapping is an isomorphism.

Example 6.6

The language of graph hamiltonicity, L = {G : G has a Hamiltonian path}, is in NP.

• input x represents the adjacency matrices of G1 and G2;
• input u represents a potential Hamiltonian path in G;
• M(x, u) checks if u is a path and visits every node exactly once;
• Note that |u| ≤ poly(|x|).

36

Example 6.7

Satisfiability (SAT) problem: Consider the language L = {ϕ : ϕ is satisfiable}, where x represents
a Boolean formula and u a Boolean assignment, and M checks if the assignment satisfie the fomula
(|u| ∈ poly(|x|) and M works in polytime). This is in NP.

Question 6.1.

Is Unsatisfiability in NP? UNSAT = {ϕ : ϕ is not satisfiable}.

Answer. This is not known yet.

Lecture 14 - Monday, October 27

6.2.2 P = NP?

Conjecture: P ̸= NP.

6.3 Reductions: Comparing Relative Hardness

Definition 6.6: Karp Reduction

L is Karp-reduced to L′ (denoted L ≤p L
′) if there exists a poly-time computable f such that

∀x : x ∈ L ⇐⇒ f(x) ∈ L′

Example 6.8: CLIQUE ≤p V-COVER

A clique is a set of nodes that are all connected. CLIQUE asks if a given graph G = (V,E) has a clique
of size k, and V-COVER asks if a given graph G = (V,E) have a vertex cover of size s.

We have the following lemma:

Lemma 6.1

Given G = (V,E) and let G be the complement, then

(G, k) ∈ CLIQUE ⇐⇒ (G,n− k) ∈ V-COVER

Hence we can define our f to be f(G, k) = (G,n− k) for all (G, k). It is easy to verify that f
is poly-time computable.

6.3.1 NP hardness and NP completeness

Definition 6.7: NP-hard

We say that L′ is NP-hard if L ≤p L
′ for every L ∈ NP.

37

Definition 6.8: NP-complete

We say that L′ is NP-complete if L′ is NP-hard and L′ ∈ NP.

Theorem 6.3: Cook 1971, Levin 1973

SAT = {ϕ : ϕ is in CNF and ϕ is satisfiable} is NP-complete.

Theorem 6.4: Transitivity

If L1 ≤p L2 and L2 ≤p L3, then L1 ≤ L3.

Proof. There exists poly-time functions f , g such that x ∈ L1 if and only if f(x) ∈ L2 and that x′ ∈ L2

if and only if g(x′) ∈ L3. Thus, x ∈ L1 if and only if g(f(x)) ∈ L3. Also g(f(·)) is poly-time computable
because both f and g are.

Result 6.1

As a result, if SAT ≤p L, then L is NP-hard. Moreover, if L is in NP, then L is NP-complete.

Theorem 6.5

If L′ ≤p L and L ∈ P, then L′ ∈ P.

Theorem 6.6: Collapsing Theorem

If L is NP-complete and L ∈ P, then P = NP.

6.3.2 Proving NP-completeness

Define kSAT to be the language whose clauses has exactly k literals. In other words, for φ ∈ kSAT, then
φ = C1 ∧ · · · ∧ Cm, where each Ci is of the form Ci = ℓ1 ∨ · · · ∨ ℓk for literals ℓj . We have

• 1SAT ∈ P ; and

• 2SAT ∈ P ; but

• 3SAT is NP-complete.

Lecture 15 - Wednesday, October 29

SAT ≤p 3SAT Our goal is to show that, given a CNF formula φ = C1 ∧ · · · ∧ Cm (clauses are disjunctions
of literals), produce in polynomial time an equi-satisfiable CNF φ′ in which every clause has exactly three
literals.

38

Comment 6.3

Assume fresh variables introduced below do not appear elsewhere.

We have three cases:

1 [Two-literal clause.] If C = (x1 ∨ x2), introduce a fresh variable p and replace C by

(x1 ∨ x2 ∨ p) ∧ (x1 ∨ x2 ∨ ¬p)

(Always satisfied exactly when x1 ∨ x2 is satisfied.)

2 [Unit clause.] If C = (x), introduce fresh p1, p2 and replace C by the four clauses

(x ∨ p1 ∨ p2) ∧ (x ∨ p1 ∨ ¬p2) ∧ (x ∨ ¬p1 ∨ p2) ∧ (x ∨ ¬p1 ∨ ¬p2)

(These force satisfaction iff x is true.)

3 [Clause with r > 3 literals.] If C = (z1∨ z2∨ · · ·∨ zr), introduce fresh variables y1, . . . , yr−3 and
replace C by the chain

(z1 ∨ z2 ∨ y1) ∧ (¬y1 ∨ z3 ∨ y2) ∧ (¬y2 ∨ z4 ∨ y3) ∧ · · · ∧ (¬yr−4 ∨ zr−2 ∨ yr−3) ∧ (¬yr−3 ∨ zr−1 ∨ zr).

(This set of r − 2 three-literal clauses is satisfied iff the original long clause is satisfied.)

Exercise 6.1

Prove correctness of each replacement and that the construction is polynomial.

2SAT ∈ P The main idea is that

(x ∨ y) ∧ (x ∨ y) ≡ (y ∨ z) if x /∈ {y, z, y, z}

3SAT ≤p CLIQUE Let

Φ = (x1,1 ∨ x1,2 ∨ x1,3) ∧ (x2,1 ∨ x2,2 ∨ x2,3) ∧ · · · ∧ (xk,1 ∨ xk,2 ∨ xk,3)

be a 3-CNF with k clauses, where each xi,j is a literal (a variable or its negation). We construct a graph G

such that
Φ ∈ 3SAT ⇐⇒ (G, k) ∈ CLIQUE

We construct G in the following way:

• Nodes. For each literal xi,j (the j-th literal in clause i), create a node labeled xi,j . There are 3k nodes
total.

• Edges. For two nodes xi,j and xi′,j′ , add the edge {xi,j , xi′,j′} iff

i ̸= i′ and xi,j ̸= xi′,j′ .

(So: connect literals from different clauses unless they are complementary.)

39

Note 6.3

The construction makes 3k nodes and O(k2) edge checks, hence is polynomial.

Result 6.2

Since we showed SAT ≤p 3SAT ≤p CLIQUE ≤p V-Cover. All these problems are in NP. And since SAT is
NP-complete, all of them are NP complete.

6.3.3 Cook-Levin Theorem

Theorem 6.7: Cook-Levin Theorem

For every language L ∈ NP there exists a polynomial-time computable map f such that for all inputs
x, x ∈ L iff f(x) is a satisfiable CNF formula. Equivalently, SAT is NP-complete.

We have seen that SAT ∈ NP. We now show that for any NP language L we have L ≤p SAT.

Cook–Levin: NP ≤p SAT. Fix any language L ∈ NP. There exists a single-tape nondeterministic Turing
machine M = (Q,Γ,Σ, δ, q0, qacc, qrej) and a polynomial T (n) such that on every input x ∈ Σn, M halts
within T (n) steps and x ∈ L iff M accepts x. We build, in time poly(n), a CNF formula Φx that is
satisfiable iff M accepts x within T (n) steps.

Tableau and variables. Let the computation tableau have rows t = 0, 1, . . . , T (time) and columns
i = 1, 2, . . . , S (tape cells), where T := T (n) and S := T + 1 suffice for a single-tape machine. Introduce
Boolean variables

Xt,i,σ (σ ∈ Γ), Ht,i, Qt,q (q ∈ Q),

intended to mean: at time t, cell i contains σ, the head is at cell i, and the control state is q, respectively.

CNF constraints (conjoined to form Φx). (A) Exactly-one constraints (well-formed configurations).
For each t and i: ∨

σ∈Γ
Xt,i,σ ∧

∧
σ ̸=σ′

(¬Xt,i,σ ∨ ¬Xt,i,σ′),

S∨
i=1

Ht,i ∧
∧
i̸=j

(¬Ht,i ∨ ¬Ht,j),

∨
q∈Q

Qt,q ∧
∧

q ̸=q′

(¬Qt,q ∨ ¬Qt,q′).

(B) Initial configuration. At t = 0 the state is q0, the head is at cell 1, the tape spells x then blanks:

Q0,q0 ∧ H0,1 ∧
|x|∧
i=1

X0,i,xi ∧
S∧

i=|x|+1

X0,i,blank.

(C) Acceptance within T steps.
T∨

t=0
Qt,qacc .

40

(D) Local transition (consistency) constraints. For each t ∈ {0, . . . , T − 1} and each i:
(D1) Non-head cells keep their symbol. For every σ ∈ Γ,

(Ht,i ∨ ¬Xt,i,σ ∨Xt+1,i,σ) ∧ (Ht,i ∨ ¬Xt+1,i,σ ∨Xt,i,σ).

(D2) Head cell updates according to δ. For each transition δ(q, σ) ∋ (q′, τ, d) with d ∈ {−1, 0,+1}
and all i with 1 ≤ i, i+ d ≤ S:

(¬Qt,q ∨ ¬Ht,i ∨ ¬Xt,i,σ ∨Qt+1,q′),
(¬Qt,q ∨ ¬Ht,i ∨ ¬Xt,i,σ ∨Xt+1,i,τ),
(¬Qt,q ∨ ¬Ht,i ∨ ¬Xt,i,σ ∨Ht+1,i+d).

To forbid illegal moves, for any triple (q, σ) and displacement d not allowed by δ, add

¬Qt,q ∨ ¬Ht,i ∨ ¬Xt,i,σ ∨ ¬Ht+1,i+d.

Size bound and construction time. We have (T + 1)S = O(T 2) time–cell pairs, and the numbers of
symbols |Γ| and states |Q| are constants for M . Hence the variable and clause counts are poly(n), and
generating all clauses is doable in poly(n) time.

Correctness. (⇒) If M accepts x in ≤ T steps, interpret each variable by the accepting tableau: Xt,i,σ

is true exactly for the symbol present, and similarly for Ht,i and Qt,q. Then (A) holds by construction, (B)
holds at t = 0, (D1)–(D2) hold because successive rows follow δ, and (C) holds since an accepting row exists;
thus Φx is satisfiable.

(⇐) If Φx is satisfiable, (A) forces each row to encode exactly one configuration (unique symbol per
cell, unique head position, unique state). Clauses (B) and the (t → t+1) clauses in (D1)–(D2) ensure that
successive rows follow the transition function δ from the correct start row. Clause (C) guarantees that some
row is in state qacc. Therefore M accepts x within T steps.

Conversion to 3-CNF. Every clause above has constant width; convert to 3-CNF via the standard
introduce-a-fresh-variable gadget, incurring only a linear blow-up. Hence the mapping x 7→ Φx is a polynomial-
time reduction from L to SAT.

This proves that SAT is NP-hard. Since SAT ∈ NP, SAT is NP-complete.

41

6.3.4 Alternative definition of NP and Non-deterministic Turing Machines

We may define NP in terms of poly-time non-deterministic TMs.

Comment 6.4

We will work with TMs with a branching factor of two. The NDTM has two transition functions
δ0 : Q× Γ→ Q× Γ× {L,R} and δ1 : Q× Γ→ Q× Γ× {L,R}.

Definition 6.9: Runtime of NDTM

Let N be a nondeterministic TM all of whose branches halt. The running time of N , denoted t(n), is
the maximum number of steps that N uses on any branche of its computation on any input of length
n.

Definition 6.10: NTIME(T (n))

NTIME(T (n)) is the class of languages decided by a single tape non-deterministic O(T (n)) TM.

Note 6.4

A t(n) time nondeterministic TM can be simulated by a O(2O(t(n))) time deterministic TM on three
tapes (and hence the same time complexity on a single tape).

Theorem 6.8

We have
NP =

⋃
c∈N

NTIME(nc)

Proof. [⇐=] Given a poly-time DTM verifier V and poly p, define NTM N : on input x, nondeterministically
guess u ∈ {0, 1}p(|x|) and accept iff V (x, u) = 1. Then N runs in poly-time and x ∈ L ⇔ N accepts x, so
L ∈ NP.
[=⇒] Given L ∈ NP, let NTM M decide L in time T (n) ≤ nc with binary branching. Define DTM V : on
input (x, u) with |u| = T (|x|), simulate M(x) for ≤ T (|x|) steps, fixing each nondeterministic choice by the
next bit of u; accept iff the run reaches qacc. Then V runs in poly-time and

x ∈ L ⇐⇒ ∃u ∈ {0, 1}T (|x|) V (x, u) = 1.

Thus L has a polynomial-time verifier.

42

Lecture 16 - Monday, November 03

Proposition 6.1

If L1 ∈ NP and L0 ≤p L1, then L0 ∈ NP.

Proof. Since L1 ∈ NP , ∃ DTM verifier M1: x ∈ L1 ⇐⇒ ∃u M1(x, u) ∈ L1. Since L0 ≤p L1, ∃ poly-time
computable p: x ∈ L0 ⇐⇒ p(x) ∈ L1. DTM verifier M0 for L0: M0(x, u) simulate M1(p(x), u).

6.3.5 Class coNP

Definition 6.11: coNP

A language L is in coNP if there exists a polynomial p : N→ N and a poly-time TM M such that for
all x ∈ Σ(L)∗,

x ∈ L ⇐⇒ ∀u ∈ Σ(L)≤p(|x|), M(x, u) = 1

Proposition 6.2

We have L ∈ coNP if and only if L ∈ NP.

Theorem 6.9

If L is NP-complete, then L is coNP-complete.

Proof. First, since L ∈ NP, by definition of coNP we have L ∈ coNP.
It remains to show coNP-hardness of L. Notice that for all L′ ∈ coNP, we have

x ∈ L′ ⇐⇒ x /∈ L′ ⇐⇒ p(x) /∈ L ⇐⇒ p(x) ∈ L

Example 6.9

Here are some examples in coNP: non-satisfiability, tautologies, non-hamiltonicity

Definition 6.12: coNP-complete

We say L is coNP-complete if L ∈ coNP and for all A ∈ coNP, we have A ≤p L.

Theorem 6.10

Non-satisfiability is coNP-complete.

Lecture 17 - Wednesday, November 05

43

Theorem 6.11

Unless NP = coNP, SAT /∈ coNP.

Proof. We argue by contradiction. Assume SAT ∈ coNP.

Step 1: NP ⊆ coNP. Since SAT is NP-complete under Karp (many-one) reductions, for every L ∈ NP
there exists a polynomial-time computable f such that

x ∈ L ⇐⇒ f(x) ∈ SAT.

Because SAT ∈ coNP and coNP is closed under Karp preimages (i.e., if A ∈ coNP and B ≤p
m A, then

B ∈ coNP), it follows that L ∈ coNP. Hence NP ⊆ coNP.

Step 2: coNP ⊆ NP. From SAT ∈ coNP we get SAT = UNSAT ∈ NP. We claim UNSAT is coNP-complete
under Karp reductions: for any A ∈ coNP, the complement A ∈ NP, so there is a polynomial-time g with

x ∈ A ⇐⇒ g(x) ∈ SAT.

Taking complements gives
x ∈ A ⇐⇒ g(x) ∈ SAT = UNSAT,

so A ≤p
m UNSAT. Since UNSAT ∈ NP and NP is closed under Karp preimages, we conclude A ∈ NP. Thus

coNP ⊆ NP.
Combining the two inclusions yields NP = coNP, contradicting the premise. Therefore, unless

NP = coNP, we must have SAT /∈ coNP.

Corollary 6.1

If P = NP ∩ coNP, then we can solve the Factoring problem in polynomial time.

Proof. Consider the decision language

L≤ = {(n, k) ∈ N2 : ∃ prime r ≤ k with r | n}.

We claim L≤ ∈ NP ∩ coNP.
NP: A YES witness is such a prime r ≤ k with r | n. Verification is polynomial time: check r ≤ k,

test r is prime (AKS), and test r | n.
coNP: A NO witness certifies that n has no prime factor ≤ k. Since the input is promised semiprime

n = pq, a succinct certificate is: the prime factorization n = p1q1 together with p > k and q > k is not
possible if k ≥

√
n (because then min{p, q} ≤

√
n ≤ k). Instead, for general k, give the factorization

n = pq and show p > k and q > k fail—but this cannot hold. A standard workaround is to use Pratt/AKS
certificates to show primality of all primes ≤ k and then certify that none divides n. Concretely, list all
primes ≤ k together with succinct primality certificates and give the remainders n mod r for each such r,
each nonzero. The number of primes ≤ k is O(k/ log k) and each check is polynomial in logn and log k, so
the aggregate certificate is polynomial in the input size when k ≤ n. Thus L≤ ∈ coNP.

Hence, under P = NP ∩ coNP, we have L≤ ∈ P.

44

Now solve semiprime factoring in polynomial time using L≤ as a subroutine. Given n = pq with
p ≤ q, note p ≤

√
n. Perform binary search on k ∈ [2, ⌊

√
n⌋] using the predicate (n, k) ∈ L≤, which is

monotone in k. In O(logn) queries, we find the least prime factor p of n. Set q ← n/p and output (p, q). All
arithmetic is on O(logn)-bit integers, and each call to L≤ runs in polynomial time, so the overall runtime is
polynomial in logn.

Therefore, assuming P = NP ∩ coNP, semiprime factoring (outputting the two primes) is in
polynomial time.

6.3.6 Search vs. Decision for SAT

So far we defined problems as “decision problems” Now we care about: given formula Φ, we wish to find an
assignment A such that Φ(A) = 1. In other words, it does not just tell us whether or not A exists or not,
we are looking for one.

Let Search-SAT be search version of SAT.

It is easy to see that if we can solve Search-SAT in polynomial time, then we can solve (Decision)
SAT in polynomial time as well.

Comment 6.5

The reduction is very similar to Karp-Reduction, but note that Search-SAT is not a decision problem.

Question 6.2. .

What if we can solve Decision-SAT ∈ P? Can we then solve Search-SAT as well?

Theorem 6.12

If we could solve (Decision) SAT in polynomial time we can also solve the search version, Search-SAT,
in polynomial time

Proof. Let φ(x1, . . . , xn) be a CNF formula. Assume an oracle/procedure SAT(·) that runs in polynomial
time and returns YES iff its input is satisfiable.

Algorithm 1: Search-SAT via SAT oracle (self-reduction)
Input: CNF formula φ(x1, . . . , xn)
Output: Satisfying assignment (x1, . . . , xn) or UNSAT

1 if SAT(φ) = NO then
2 output UNSAT;

3 for i← 1 to n do
4 if SAT(φ ∧ xi) = YES then
5 set xi ← 1; φ← φ[xi := 1];

6 else
7 set xi ← 0; φ← φ[xi := 0];

8 output (x1, . . . , xn);

45

Lecture 18 - Monday, November 10

Correctness. We show by induction on i that at the start of iteration i the current formula φ is satisfiable.
Base case. Step 1 either halts correctly with UNSAT, or proceeds with a satisfiable φ.
Inductive step. Suppose the current φ is satisfiable.

• If SAT(φ ∧ xi) = YES, then some satisfying assignment sets xi = 1, hence fixing xi = 1 preserves
satisfiability.

• If SAT(φ ∧ xi) = NO, then no satisfying assignment has xi = 1, so every satisfying assignment must
have xi = 0. Thus φ ∧ ¬xi is satisfiable, and fixing xi = 0 preserves satisfiability.

After n iterations all variables are fixed and satisfiability has been preserved, yielding a satisfying assignment.

Complexity. There are at most 1 + n oracle calls (one initial check and one per variable), each on
a formula of size O(|φ|). If SAT runs in time p(|φ|) for a polynomial p, the overall running time is
O(n · p(|φ|) + poly(|φ|)), hence polynomial.

Conclusion. This is a polynomial-time Cook/Turing reduction from Search-SAT to SAT (self-reducibility
of SAT), so if SAT ∈ P then Search-SAT ∈ P.

Question 6.3.

What kind of Reduction was that?

Answer. We assumed a “subroutine” A that solves Circ-SAT Presented an algorithm B that uses A and
solves Search-SAT. This is known as Cook or Turing Reduction.

Definition 6.13: Cook Reduction & Turing Reduction

Cook or Turing reduction: Given a subroutine A that solves some “problem” Y , B uses A to solve
some other problem X. Notation: X ≤T Y .

Comment 6.6

Algorithm B, given access to a black-box/oracle O that decides Y , decides X in polynomial time
(notation is BO decides X).

Comment 6.7

Oracle calls and answers are considered as one unit of computation.

Exercise 6.2

For any language L, L ≤T L. Why?

Proof. Given an oracle O for deciding L, design a poly-time BO(x) as follows: call O(x) to get a bit b, and
then return b.

46

Question 6.4.

Is L ≤p L for all languages L ∈ NP?

Answer. Not unless NP = coNP. We show that for any L ∈ NP, L ≤P Taut because this would then implies
that NP ⊆ coNP. We have the following relation:

L ≤P SAT & L ≤P L =⇒ L ≤P SAT =⇒ L ≤P SAT ≤P Taut

as desired.

Theorem 6.13

Suppose L is any NP language, then there is a Turing reduction from the search version of L.

6.4 Can Randomization Help Computation?
It seems like randomization does help computation, the following are examples:

Example 6.10

Primality Testing (2002): there exists a poly-time randomized algorithm A with uses nc random coins
on an n-bit input such that for all x ∈ {0, 1}n,

Prr←{0,1}nc [A(x, r) is incorrect] ≤ 2−n

Example 6.11

Suppose we are given a polynomial q(x) of degree d over Zp for a prime p. We want to answer, is
q(x) = 0. A randomized algorithm is to randomly pick a from Zp and return 1 if and only if q(a) = 0.
For all polynomial q,

Pra[A(q) is incorrect] ≤ d

p

To boost the correctness, we can perform the above process 100 times under independently random as.
If all of them return 0, return 1; else return 0. In this case:

• If q = 0, PrA outputs 1 = 1;

• If q ̸= 0, PrA outputs 1 ≤ (d/p)100;

Example 6.12

Given three matrices A,BC over Z2, we want to answer whether AB = C. The best deterministic
algorithma runs in O(n2.377). Note that O(n2) is a lower-bound on any deterministic algorithm running
time because it should read the input. We have the following randomized algorithm:

Sample a random column vector x ∈ {0, 1}n and check ABx = Cx

This has running time O(n2) because ABx = A(Bx), and

47

• If AB = C, then R always return 1;

• If AB ̸= C, then R outputs 0 with probability at least 1/2. This is because if AB ̸= C, let v be
the first non-zero row of AB − C, then

Prx[ABx = Cx] ≤ Prx

[
n∑

i=1
vixi mod 2 = 0

]
= 1

2

aas of the year 2025

Lecture 19 - Wednesday, November 12

6.4.1 Probabilistic Turing Machine (PTM)

Definition 6.14: Probabilistic Turing Machine

A probabilistic Turing machine is a non-deterministic Turing machine that chooses between the
available transitions at each point according to some probability distribution.

Note 6.5

The computation is denoted as M(x, r), where |r| is fixed based on the length of |x|.

6.4.2 Class BPP (Bounded Probabilistic Poly Time)

Definition 6.15: Bounded Probabilistic Poly Time (BPP)

We say L ∈ BPP if there exists a polynomial-time deterministic TM M and a polynomial p such that
for every x ∈ {0, 1}∗, we have

Prr←{0,1}p(|x|) [M(x, r) = L(x)] ≥ 2
3

Comment 6.8

We sometimes refer to such M as probabilistic poly-time (PPT) TMs, signifying that the r part is
chosen uniformly at random.

Note 6.6

Let M(x) be a random variable denoting the output of M(x, r) where the randomness value r is picked
uniformly at random from the underlying space.

48

6.4.3 Class RP and coRP

Definition 6.16: RP

We say L ∈ RP, if there exists a PTT TM M such that

• for all x ∈ L, Pr[M(x) = 1] ≥ 2/3;

• for all x /∈ L, Pr[M(x) = 0] = 1;

Result 6.3

We have RP ⊆ NP.

Definition 6.17: coRP

We define coRPas the complement of RP. That is, L ∈ coRP if and only if L ∈ RP.

Note 6.7

If L ∈ coNP, then for any x ∈ L, the PPT TM M will always output 1, and if x /∈ L, it will output 0
with probability at least 2/3.

6.4.4 RP Error Reduction

Question 6.5.

How to decrease the error for RP?

Answer. Suppose we have a PTT TM M such that

• for all x ∈ L, Pr[M(x) = 1] ≥ 2/3; • for all x /∈ L, Pr[M(x) = 0] = 1;

Then, we can run it k times and output 1 if and only if at least one run outputs 1. Formally speaking, we
define M ′(x, r(1), . . . , r(k)) as running M(x, r(1)), . . . ,M(x, r(k)) and output 1 if at least one of them outputs
one. then we have

• for all x ∈ L, Pr[M(x) = 1] ≥ 1− (1/3)k; • for all x /∈ L, Pr[M(x) = 0] = 1;
-0.5cm

Primality Test: One-sided PPT Given a natural number n, we want to determine in poly(logn) time
if n is prime. By Fermat, we know that

If n is a prime, then for all a ∈ [n− 1], an−1 = 1 (mod n).

Therefore, if there exists a ∈ [n − 1] such that an−1 ̸= 1 (mod n), then this a is a witness to n’s
compositeness.

49

First Attempt Here is our first algorithm:
Algorithm 2: Primality Test Attempt 1

Input: Natural number n
Output: Primality of input n

1 Sample a← [n− 1];
2 if an−1 ̸= 1 (mod n) then
3 return Composite

4 return Prime

Note 6.8

Note that if n is prime, we always output “prime”. However, what if the number n is compositive? By
Lagrange, we have the following result:

If there exists a ∈ [n − 1] such that an−1 ̸= 1 (mod n), then there are at least half of the
elements in [n− 1], say b, satisfies that bn−1 ̸= 1 (mod n).

Therefore, we output “composite” for such composite numbers with probability at least 1/2.

Comment 6.9

Such composite numbers n are called Carmichael, but not all compositive numbers are Carmichael.
We will later refine this algorithm.

6.4.5 BPP Error Reduction

Question 6.6.

How to decrease the error for BPP.

Answer. Suppose we have a PTT TM M such that

• for all x ∈ L, Pr[M(x) = 1] ≥ 2/3; • for all x /∈ L, Pr[M(x) = 0] = 2/3;

The error reduction technique we saw for RP doesn’t work for BPP. We need to do it another way, and use
tail inequalities (e.g., Chernoff bounds) to analyze it.

Chernoff Bound Let X1, . . . , Xt be independent and identically-distributed (i.i.d) Bernouli random vari-
ables, where Pr[X1 = 1] = µ. Let X = (X1 + · · ·+Xt)/t, then

Pr[|X − µ| ≥ ε] ≤ 2
exp(tε2/4)

50

Theorem 6.14: Error Reduction for BPP

For L ⊆ {0, 1}∗, suppose there exists a PPT TM M and a constant c such that for all x,

Pr[M(x) = L(x)] ≥ 1
2 + |x|−c

Then, for any constant d, there exists a PPT TM M ′ such that for all x,

Pr[M ′(x) = L(x)] ≥ 1− 2−|x|
d

Proof. We first define our new PPT TM M ′ as: Let

m =
⌈

4n2c
(
nd + 1

)
− 1

2

⌉
,

where n = |x|, and run M(x) 2m + 1 times and output majority. Let yi = 1 if the ith trial outputs the
correct bit L(x). We have

µ = Pr[yi = 1] ≥ 1
2 + 1

nc
.

Let Y = y1 + · · ·+ y2m+1

2m+ 1 , then

Pr[majority is wrong] ≤ Pr
[
Y ≤ 1

2
]
≤ Pr

[
|Y − µ| ≥ 1

nc

]
≤ e−

2m+1
4n2c ≤ 1

2nd .

due to Chernoff established above.

Lecture 20 - Monday, November 17

Theorem 6.15: Strong Error Reduction for BPP

Suppose for β > ε = 1/poly > 0

x ∈ L⇒ Pr[M(x) = 1] > β + ε

x /∈ L⇒ Pr[M(x) = 1] < β − ε

Then we can make the error probability exponentially small

1
2|x|d

as in the above theorem.

Proof Attempt: Given x:

1. Compute µ := Pr[M(x) = 1]. This can be done deterministically in exponential time by enumer-
ating over all randomness values.

2. If µ is closer to β + ε (i.e., |µ− (β + ε)| ≤ |µ− (β − ε)|) output 1, else 0.

This deterministic alg is always correct but runs in exponential time.
Idea: Approximate µ via µ′ in PPT within an additive factor ε/3.

51

• Namely, we want to have: with probability ≈ 1,

|µ′ − µ| ≤ ε

3 .

• Replace µ in Condition (2) above with µ′.

• With probability ≈ 1, we can correctly predict if x ∈ L.

Proof Sketch. • Approximate
µ := Pr[M(x) = 1]

within an additive factor ε/3 with probability error at most 1/2nd . That is, find µ′ such that

Pr
[
|µ− µ′| ≥ ε

3

]
≤ 1

2nd .

• If µ′ is closer to β + ε (i.e.,
|µ′ − (β + ε)| ≤ |µ′ − (β − ε)|),

then output 1, else output 0.
To compute such a µ′, run M(x)

m := 36 (nd + 1)
ε2

times, obtaining outputs y1, . . . , ym ∈ {0, 1}, and set

µ′ := y1 + · · ·+ ym

m
,

where yi is the output of the ith execution.

6.4.6 BPP is a subset of “non-constructive P”

Theorem 6.16

Any language in BPP can be solved via a non-constructive deterministic poly-time algorithm.

Proof. Reduce the error sufficiently small and argue there exists a choice of randomness (non-constructive
part) that works for all strings.
Suppose Pr[M(x) ̸= L(x)] ≤ 1

2|x|+1 . Then for any x ∈ {0, 1}n, at most a 1
2n+1 fraction of randomness values

are bad. Thus, the fraction of randomness values that are bad for some x ∈ {0, 1}n is at most 1
2 .

Comment 6.10

There is evidence that NP cannot be solved non-constructively in a deterministic way.

Lecture 21 - Wednesday, November 19

52

6.5 Complexity Class ZPP

Definition 6.18: ZPP

ZPP is the class of languages that can be solved in expected poly time on every input, and always
produces the correct output.

Definition 6.19: Ztime(T (n))

The class Ztime(T (n)) are languages L for which there exists a PPT TM M that on any input
x ∈ {0, 1}n runs in expected time O(T (n)) such that if M(x) halts, it outputs the correct bit x ∈? L.

Proposition 6.3

We have
ZPP =

⋃
c≥0

Ztime(nc)

Theorem 6.17

We have
ZPP = RP ∩ coRP

Proof. We can show ZPP ⊆ RP (and similarly ZPP ⊆ coRP) using the Markov inequality, which states that
any nonnegative random variable X satisfies

Pr
(
X ≥ kE[X]

)
≤ 1
k
.

If M runs in expected time T (n), run M for 3T (n) steps, and output yes if it halts and says yes; otherwise,
say no. How to prove RP ∩ coRP ⊆ ZPP?

Lecture 22 - Monday, November 24

6.6 Interractive Proof IP

The Interactive Proof Systems is characterized by an unbounded prover P and a poly-time verifier V .
Let outV ⟨V, P ⟩ denote the output bit of the verifier V in an interactive protocol with P . A language L
belongs to IP if there exist V , P such that for all Q, w:

Soundness: w ∈ L =⇒ Pr[outV ⟨V, P ⟩ = 1] ≥ 2
3 ;

Completeness: w /∈ L =⇒ Pr[outV ⟨V,Q⟩ = 1] ≤ 1
3 .

Note 6.9
We can design interactive proofs (in fact non-interactive proofs) for all language in NP, by a prover
simply sending a witness.

53

7 Second Midterm Practices

7.1 NP-Complete

Exercise 7.1

Assuming 3SAT is NP-complete, prove that EXACT-3SAT is NP-complete. Recall

• 3SAT: Input is a CNF formula φ where each clause has at most 3 literals. Question: is φ
satisfiable?

• EXACT-3SAT: Input is a CNF formula ψ where each clause has exactly 3 literals. Question:
is ψ satisfiable?

Proof. For clauses with three literals keep them as they are. For clauses with two literals, say x∨ y, replace
it with

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z)

where z is a fresh variable. For clauses with one literal, say x, introduce new variables y and z and replace
the clause with

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z)

The rest of the proof is omitted.

54

Exercise 7.2

Assuming CLIQUE is NP-complete, prove that INDEPENDENT SET is NP-complete. Recall

• CLIQUE: Input is a graph G = (V,E) and an integer k. Question: does G contain a clique of
size at least k?

• INDEPENDENT SET: Input is a graph G′ = (V ′, E′) and an integer k′. Question: does G′

contain an independent set of size at least k′?

Proof. Just take the graph complement.

Exercise 7.3

Assuming SUBSET SUM is NP-complete, prove that PARTITION is NP-complete. Recall

• SUBSET SUM: Input is a multiset of positive integers S = {a1, . . . , an} and a target integer
T . Question: is there a subset U ⊆ S such that

∑
a∈U a = T?

• PARTITION: Input is a multiset of positive integers S′ = {b1, . . . , bm}. Question: can S′ be
partitioned into two subsets X and S′ \X such that∑

x∈X

x =
∑

x∈S′\X

x ?

7.2 True or False

Exercise 7.4

If L1, L2 ∈ P, then L1 ∩ L2 ∈ P. Yes No

Proof. True.

Exercise 7.5

If L1, L2 ∈ P, then L1 ∪ L2 ∈ P. Yes No

Proof. True.

Exercise 7.6

If L ∈ P, then L ∈ NP. Yes No

Proof. True. because P is closed under complement and P ⊆ NP.

55

Exercise 7.7

If L ∈ NP and L′ is decidable, then L ∩ L′ is decidable. Yes No

Proof. True. Every NP language is decidable (simulate the NP machine deterministically), and the intersec-
tion of two decidable languages is decidable.

Exercise 7.8

If L ∈ NP and L′ is decidable, then L ∩ L′ is decidable. Yes No

Proof. True. Every NP language is decidable (simulate the NP machine deterministically), and the intersec-
tion of two decidable languages is decidable.

Exercise 7.9

If L is undecidable and L′ is decidable, then L ∩ L′ is undecidable. Yes No

Proof. False. Take L′ = ∅; then L ∩ L′ = ∅, which is decidable. (Also L′ = Σ∗ gives undecidable again, so
both are possible.)

7.3 Prove B is undecidable assuming A is

Exercise 7.10

Prove that B is undecidable assuming A is. (Level of difficulty: easy.)
A = ALLCF G = { ⟨G⟩ | G is a CFG and L(G) = Σ∗ }
B = EQCF G = { ⟨G1, G2⟩ | G1, G2 are CFGs and L(G1) = L(G2) }

Proof. Pick G2 such that L(G2) = Σ∗.

Exercise 7.11

Prove that B is undecidable assuming A is. (Level of difficulty: medium.)
A = ALLCF G = {⟨G⟩ | G is a CFG and L(G) = Σ∗}
B = REGCF G = {⟨G⟩ | G is a CFG and L(G) is a regular language}.

Exercise 7.12

Prove that B is undecidable assuming A is. (Level of difficulty: medium.)
A = ALLCF G = {⟨G⟩ | G is a CFG and L(G) = Σ∗}
B = AMBIGCF G = {⟨G⟩ | G is a CFG and G is ambiguous}.

7.4 CFL Pumping Lemma

56

Exercise 7.13

Let
L2 = {anbmcndm | n,m ≥ 0}.

Use the CFL pumping lemma to show L2 is not context-free. Assume L2 is context-free. Let p be the
pumping length. Choose

s = ∈ L2.

Write s = uvxyz with the usual conditions of the lemma. Argue that v and y together affect at most
two of the four blocks (a’s, b’s, c’s, d’s), and pick

i =

so that uvixyiz /∈ L2, a contradiction.

Exercise 7.14

Let
L4 = {ww | w ∈ {0, 1}∗}.

Use the CFL pumping lemma to show that L4 is not context-free. Assume L4 is context-free and let p
be the pumping length from the lemma. Consider the string

s = ∈ L4

of length at least p where the first half and second half are carefully chosen. For every decomposition
s = uvxyz with |vxy| ≤ p and |vy| > 0, explain why v and y must lie entirely within the first half of s,
entirely within the second half, or overlap the middle boundary. In each possible case, select a value

i =

and show that uvixyiz is no longer of the form ww, contradicting the lemma.

57

Index

(Worst Case) Running Time, 34
coRP, 49
RP, 49

Accept, 4
Ambiguous, 13

Bounded Probabilistic Poly Time (BPP), 48

Complexity Class, 34
Complexity Theory, 34
Concatenation, 6
coNP, 43
coNP-complete, 43
Context-Free Grammar, 10
Context-Free Language, 10
Cook Reduction, 46

Decide, 25
Decider, 25

Efficient Universal Turing Machine, 35
Empty String, 4
Equivalent, 5

Finite Automaton, 4

Halting Problem, 30

Karp Reduction, 37
Kleene star, 6

Leftmost Derivation, 12

Non-deterministic Turing Machine, 27
Nondeterministic Finite Automaton, 4
NP, 36
NP-complete, 38
NP-hard, 37
NTIME(T (n)), 42

Parse Tree, 12
PDA, 17
Polytime, 35
Post Correspondence Problem, 32
Probabilistic Turing Machine, 48

Regular Expression, 8
Regular Language, 4
Runtime of NDTM, 42

String, 4

Turing Decidable, 25
Turing Machine, 24
Turing Recognizable, 25
Turing Recognize, 24
Turing Reduction, 46

Union, 6

Yield of a Parse Tree, 12

ZPP, 53
Ztime(T (n)), 53

58

	Finite State (Memory) Automata (Machines)
	What languages can or cannot be accepted by DFAs? Or what is the power of DFAs?
	The class of regular languages is closed under the union, concatenation, and star operation.
	Pumping Lemma

	Regular Expression
	Some Examples and Practices

	Context Free Grammars and Languages
	Example CFGs
	CFG for A = {x : x has same number of of 0s and 1s }
	CFG for Palindromes: A = { w {a, b}* : wR = w }
	CFGs for A = { w {(,)}* : w is balanced}

	Parse Tree
	Yield of a Parse Tree

	Ambiguous vs Non-Ambiguous Grammar
	Power and Limitations of CFGs
	Pumping Lemma (for CFL)
	A = { 0i 1i 2i : i 0 } is not a CFL
	A = { ww : w {0, 1}* } is not a CFL

	Closure Properties of CFLs
	CFLs are closed under Union, Concatenation, and Star
	CFLs are NOT closed under Intersection
	CFLs are NOT closed under Complementation

	CFLs are more powerful than regular languages
	Regular Expressions to CFGs
	DFAs to CFGs
	Algorithmic Aspects of DFAs/CFLs
	Intersection of Regular Languages and CLFs

	Push Down Automata
	PDA Definition
	Example PDAs

	PDAs are Non-Deterministic
	Example PDAs

	PDAs and CFGs have the same power

	First Midterm Practices
	Turing Machines: Computing with Unlimited Memory
	TMs vs PDAs/ DFAs
	Designing Turing Machine for Languages, Examples
	A = {ai bi : i 1} and its Turing Machine
	A = {ai bi ci : i 1} and its Turing Machine
	L = {ww : w {0, 1}*} and its Turing Machine
	Church Turing Thesis
	Variants of Turing Machines

	Non-Deterministic TMs (NTMs)
	Example A = {Composite numbers}

	Is every language recognizable?
	First undecidable problem
	Acceptance problem is undecidable
	An Unrecognizable Language

	Relation between recognizing and deciding
	Halting problem is not decidable
	An undecidable language not involving TMs
	More Undecidable Problems

	Doubly Unrecognizable Problem

	Computation Complexity
	What is potytime and what can be solved in polytime?
	Examples of Languages in P
	Time Hierarchy Theorem

	Is it easier to verify a solution than to find it?
	Class NP (Non-Deterministic Polynomial Time)
	P = NP?

	Reductions: Comparing Relative Hardness
	NP hardness and NP completeness
	Proving NP-completeness
	Cook-Levin Theorem
	Alternative definition of NP and Non-deterministic Turing Machines
	Class coNP
	Search vs. Decision for SAT

	Can Randomization Help Computation?
	Probabilistic Turing Machine (PTM)
	Class BPP (Bounded Probabilistic Poly Time)
	Class RP and coRP
	RP Error Reduction
	BPP Error Reduction
	BPP is a subset of ``non-constructive P’’

	Complexity Class ZPP
	Interractive Proof IP

	Second Midterm Practices
	NP-Complete
	True or False
	Prove B is undecidable assuming A is
	CFL Pumping Lemma

